翻訳と辞書
Words near each other
・ Poisson ring
・ Poisson sampling
・ Poisson scatter theorem
・ Poisson summation formula
・ Poisson superalgebra
・ Poisson supermanifold
・ Poisson Volant
・ Poisson wavelet
・ Poisson's equation
・ Poisson's ratio
・ Poisson, Saône-et-Loire
・ Poissonia
・ Poissonnière (Paris Métro)
・ Poissons
・ Poisson–Boltzmann equation
Poisson–Lie group
・ Poissy
・ Poisvilliers
・ Poisy
・ Poitea
・ Poitea carinalis
・ Poitevin
・ Poitevin (dog)
・ Poitevin dialect
・ Poitevin horse
・ Poitevin-Saintongeais
・ Poitier
・ Poitier Meets Plato
・ Poitiers
・ Poitiers Basket 86


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Poisson–Lie group : ウィキペディア英語版
Poisson–Lie group
In mathematics, a Poisson–Lie group is a Poisson manifold that is also a Lie group, with the group multiplication being compatible with the Poisson algebra structure on the manifold. The algebra of a Poisson–Lie group is a Lie bialgebra.
==Definition==
A Poisson–Lie group is a Lie group ''G'' equipped with a Poisson bracket for which the group multiplication \mu:G\times G\to G with \mu(g_1, g_2)=g_1g_2 is a Poisson map, where the manifold ''G''×''G'' has been given the structure of a product Poisson manifold.
Explicitly, the following identity must hold for a Poisson–Lie group:
:\ (gg') =
\ (g') +
\\} (g)
where ''f''1 and ''f''2 are real-valued, smooth functions on the Lie group, while ''g'' and ''g are elements of the Lie group. Here, ''Lg'' denotes left-multiplication and ''Rg'' denotes right-multiplication.
If \mathcal denotes the corresponding Poisson bivector on ''G'', the condition above can be equivalently stated as
:\mathcal(gg') = L_(\mathcal(g')) + R_(\mathcal(g))
Note that for Poisson-Lie group always \(e) = 0, or equivalently \mathcal(e) = 0 . This means that non-trivial Poisson-Lie structure is never symplectic, not even of constant rank.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Poisson–Lie group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.